A model of oncogenic rearrangements: differences between chromosomal translocation mechanisms and simple double-strand break repair.
نویسندگان
چکیده
Recurrent reciprocal translocations are present in many hematologic and mesenchymal malignancies. Because significant sequence homology is absent from translocation breakpoint junctions, non-homologous end-joining (NHEJ) pathways of DNA repair are presumed to catalyze their formation. We developed translocation reporters for use in mammalian cells from which NHEJ events can be selected after precise chromosomal breakage. Translocations were efficiently recovered with these reporters using mouse cells, and their breakpoint junctions recapitulated findings from oncogenic translocations. Small deletions and microhomology were present in most junctions; insertions and more complex events also were observed. Thus, our reporters model features of oncogenic rearrangements in human cancer cells. A homologous sequence at a distance from the break site affected the translocation junction without substantially altering translocation frequency. Interestingly, in a direct comparison, the spectrum of translocation breakpoint junctions differed from junctions derived from repair at a single chromosomal break, providing mechanistic insight into translocation formation.
منابع مشابه
Complex oncogenic translocations with gene amplification are initiated by specific DNA breaks in lymphocytes.
Chromosomal instability is a hallmark of many tumor types. Complex chromosomal rearrangements with associated gene amplification, known as complicons, characterize many hematologic and solid cancers. Whereas chromosomal aberrations, including complicons, are useful diagnostic and prognostic cancer markers, their molecular origins are not known. Although accumulating evidence has implicated DNA ...
متن کاملMicrohomology Directs Diverse DNA Break Repair Pathways and Chromosomal Translocations
Chromosomal structural change triggers carcinogenesis and the formation of other genetic diseases. The breakpoint junctions of these rearrangements often contain small overlapping sequences called "microhomology," yet the genetic pathway(s) responsible have yet to be defined. We report a simple genetic system to detect microhomology-mediated repair (MHMR) events after a DNA double-strand break ...
متن کاملChromosomal rearrangements in cancer
Many cancers exhibit chromosomal rearrangements. These rearrangements can be simple with a single balanced fusion preserving the proper complement of genetic information or they can be complex with one or more fusions that distort this balance. A range of technological advances has improved our ability to detect and understand these rearrangements leading to speculation of causal mechanisms inc...
متن کاملEvidence for Replicative Repair of DNA Double-Strand Breaks Leading to Oncogenic Translocation and Gene Amplification
Nonreciprocal translocations and gene amplifications are commonly found in human tumors. Although little is known about the mechanisms leading to such aberrations, tissue culture models predict that they can arise from DNA breakage, followed by cycles of chromatid fusion, asymmetric mitotic breakage, and replication. Mice deficient in both a nonhomologous end joining (NHEJ) DNA repair protein a...
متن کاملChromosome rearrangements via template switching between diverged repeated sequences.
Recent high-resolution genome analyses of cancer and other diseases have revealed the occurrence of microhomology-mediated chromosome rearrangements and copy number changes. Although some of these rearrangements appear to involve nonhomologous end-joining, many must have involved mechanisms requiring new DNA synthesis. Models such as microhomology-mediated break-induced replication (MM-BIR) hav...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 107 2 شماره
صفحات -
تاریخ انتشار 2006